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Abstract
A discussion of dimensional reductions, which are not classical symmetry
reductions, is made for the BKP and CKP hierarchies of integrable evolution
equations. A novel direct method for testing Pfaffian solutions to bilinear
identities is presented and applied to these reductions.
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1. Introduction

Symmetry methods are widely used in the study of ordinary and partial differential
equations (PDEs). Solving the question of which transformation (of both dependent and
independent variables) leaves the solution space invariant can provide the key to finding the
complete solution. The technique may give access to a linearizing transformation or show how
to solve certain ordinary differential equations (ODEs) by quadrature only. In the case of PDEs
the method is often used in the search for classes of special solutions: symmetry reductions
reduce the number of independent variables which feature in an equation. Thus, a PDE may
be reduced to an ODE. Solutions of this ODE then yield solutions to the original equation.
For example, if a (1 + 1)-dimensional equation for the field u is invariant under both x and t
translations (corresponding to symmetries ux and ut ), one may look for solutions u(z) which
depend only upon the combination z = x − ct (travelling wave solutions). In this manner the
PDE is reduced to an ODE in the single independent variable z via the condition ut + cux = 0.

However, it is known that symmetry reductions cannot account for all the dimensional
reductions of PDEs (and hence cannot account for all special solutions). Using a direct method
Clarkson and Kruskal [1] succeeded in finding dimensional reductions which are not symmetry
reductions in the above sense. A group theoretical explanation was however soon found [2]:
one has to look for symmetries of a subset of the solutions (conditional symmetries). The
corresponding group action then either takes a solution of the PDE out of the solution space or
leaves it invariant (hence the conditional symmetry can still be used for reduction purposes).

The Kadomtsev–Petviashvili (KP) hierarchy of nonlinear PDEs is a (2 + 1)-dimensional
integrable hierarchy. It contains many integrable (1 + 1)-dimensional systems such as the
Korteweg–de Vries, Boussinesq and nonlinear Schrödinger equations as symmetry reductions.
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Some are mere standard symmetry reductions of the type utk = 0 (where tk is a specific KP-
independent variable); others couple the KP linear problem (‘Lax pair’) with the nonlinear
equations via so-called eigenfunction symmetry reductions. These have been discussed at
great length [3–13]. Similar reductions for the BKP and CKP hierarchies have also been
described [14, 15].

In this paper I shall investigate some systems which appear to be symmetry reductions at
first sight, but are not on closer inspection. Consider, for example, the system

qi,t = qi,3x + 3[q2
1 + q2

2 + · · · + q2
n]qi,x i = 1, . . . , n (1)

for which Pfaffian-type solutions are discussed in [16]. To this end it is written as

qi,t = qi,3x + 3uqi,x i = 1, . . . , n
u = q2

1 + q2
2 + · · · + q2

n.
(2)

This way of writing the system and the existence of Pfaffian solutions (see the last section for
this terminology) may lead one to think there is a connection with the BKP hierarchy: the BKP
linear problem contains the first equation of system (2) and the BKP hierarchy has solutions in
Pfaffian form. However it is wrong to think that the system (1) can be obtained from the (2+1)-
dimensional BKP hierarchy through a symmetry reduction of type ux = (q2

1 + q2
2 + · · · + q2

n)x ,
since the right-hand side of this expression is not a symmetry of the BKP equation. As will
be shown this system can nevertheless be retrieved from the BKP hierarchy via a symmetry
method.

In the following sections we shall first introduce the KP hierarchy (with its infinite number
of time variables corresponding to an infinite number of symmetries). KP eigenfunctions are
introduced and used to describe a class of eigenfunction symmetries. This material serves a
basis for the discussion of certain dimensional reductions of the CKP hierarchy in section 3.
In section 4 a class of reductions of the BKP hierarchy is discussed. Furthermore a bilinear
formulation (bilinear identity containing the Hirota equations) for the reduced systems will be
derived.

As a final point we shall introduce a novel way of checking the existence of Pfaffian
solutions to the BKP and reduced BKP equations. Existing techniques for the verification of
such solutions rely on the transformation of the Hirota differential equations to identities for
Pfaffian expressions. The method described in section 5 uses the bilinear identities directly,
without the need of writing them out as differential equations. In this manner, all differential
equations are verified in one instance. This techniques is illustrated for both the BKP and
reduced BKP bilinear hierarchies. This method is reminiscent of that one introduced in [7,10].

2. KP equations

The KP Lax operator is the first-order pseudo-differential operatorL = ∂ +u2∂
−1 +u3∂

−2 + · · ·
with coefficients u2(t), u3(t), . . . depending on the independent variables t1 = x, t2, t3, . . . .
Multiplication of pseudo-differential operators is defined by ∂n · f = ∑

k�0

(
n

k

)
fkx∂

n−k for
both positive and negative integer n. The evolution of the fields ui(t) is defined through the
differential operators Bn = (Ln)+ (the differential part of Ln, n a positive integer, such that
B1 = ∂ , B2 = ∂2 + 2u2, B3 = ∂3 + 3u2∂x + 3(u3 + u2,x), . . .):

Ltn = [Bn,L]. (3)

It is easily seen that these equations imply the relations

∂tnBm − ∂tmBn = [Bn, Bm]. (4)
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It is important to stress that the evolutions (3) are mutually compatible:

(Ltm)tn − (Ltn)tm = [Bn, Bm]L + Bm[Bn,L] − [Bn,L]Bk − L[Bn, Bm]

−Bn[Bm,L] + [Bm,L]Bn
= [[Bn, Bm], L] + [[L,Bn], Bm] + [[Bm,L], Bn] = 0. (5)

The equations (4) at m = 3 and n = 2 yield the following nonlinear PDE (the KP
equation) [17, 18]:

4u2,x,t3 − 3u2,2t2 − u2,4x − 12(u2u2,x)x = 0. (6)

Eigenfunctions� (respectively adjoint eigenfunctions�∗) are the fields which satisfy the
linear evolution equations

�tn = Bn� (resp. �∗
tn

= −B∗
n�

∗). (7)

The compatibility condition of these relations is exactly relation (4).
As shown, the flow Ltn = [Bn,L] is compatible with the other flows of the same type.

Another compatible evolution (or symmetry) is the following: introduce an eigenfunction �
and an adjoint eigenfunction �∗ and define an evolution of L by

Ly = [A,L] (8)

with A = �∂−1�∗ ≡ ��∗∂−1 − ��∗
x∂

−2 + ��∗
2x∂

−3 + · · ·. The compatibility of this
evolution with the evolution (3) follows from (�∂−1�∗)tn = ([Bn,�∂−1�∗])− [11, lemma
2.1] and from Bn,y ≡ ((Ln)+)y = ((Ln)y)+ = ([�∂−1�∗, Ln])+ = [�∂−1�∗, Bn])+:

(Ly)tn − (Ltn)y = [A,L]tn − [Bn,L]y = [[Bn,A], L] + [[L,Bn], A] + [[A,L], Bn] = 0. (9)

The reader can check that u2 + εu2,y = u2 − ε(��∗)x satisfies the KP equation (6) up to
first order in ε, showing explicitly that (��∗)x is a symmetry of the KP equation (6). These
eigenfunction symmetries are well known [3, 19] and go back to the squared eigenfunctions
of the KdV equation [20].

It should be clear to the reader that one can also introduce compatible evolutions (i.e.
symmetries) for the KP hierarchy by taking linear combinations of the previous cases (e.g.
A = �1∂

−1�∗
1 +�2∂

−1�∗
2, etc), i.e. symmetries have a linear structure.

A standard method of reducing PDEs is imposing a condition of type ut = 0 where ut
is a symmetry of the equation. The (2 + 1)-dimensional KP hierarchy may be reduced in this
way to a (1 + 1)-dimensional one. For example, Lt2 = 0 (⇔ [B2, L] = 0 or B2 = L2) or
Lx +Ly = 0 (that is [B1 +�∂−1�∗, L] = 0 or L = B1 +�∂−1�∗). These types of reduction
result in the KdV hierarchy, the nonlinear Schrödinger equation, etc and have been investigated
in detail [3, 5–12, 14, 15].

In the two following sections, we shall discuss BKP and CKP hierarchies and some
of their dimensional reductions. In both cases a condition will be put on the KP Lax
operator and its adjoint. This will imply a relation between eigenfunctions and adjoint
eigenfunctions. It follows that the eigenfunction symmetries (depending on eigenfunctions
and adjoint eigenfunctions) will take a different form in both cases.

3. The CKP case

The CKP hierarchy is obtained from the KP hierarchy by imposing the following condition on
the KP Lax operator [21, 22]:

L∗ + L = 0 (10)
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and by considering evolution with respect to odd-indexed time variables t1, t3, t5, . . . only.
The condition (10) implies u3 = − 1

2u2,x , u5 = − 3
2u4,x + 1

4u2,4x , etc. At the same time it
follows that the differential operators Bn are anti-symmetric if n is odd, and symmetric if n
is even. This then implies that there is no distinction between the CKP eigenfunction and the
adjoint eigenfunction (i.e. they satisfy the same linear equations). For further reference the
first member of the linear CKP problem is

�t3 = B3� = �3x + 3u2�x + 3
2u2,x�. (11)

It is easy to see that the condition (10) remains valid under the evolutions Ltn = [Bn,L] with
n odd: L∗

tn
+ Ltn = [Bn,L]∗ + [Bn,L] = −[Bn,L] + [Bn,L] = 0; it is not preserved under

evolutions Ltn = [Bn,L] with n even (L∗
tn

+ Ltn = [Bn,L]∗ + [Bn,L] = 2[Bn,L] �= 0, in
general). This is the reason why the CKP hierarchy only contains odd-numbered time variables.

Just as ∂t2 , ∂t4 , . . . do not preserve the condition (10), so is the case with the evolutions
of type Ly = [A,L] where A = q∂−1r (with both q and r CKP eigenfunctions). Indeed
0 = L∗

y + Ly = [A,L]∗ + [A,L] = [A + A∗, L]. Only through the special choice q = r

can this be guaranteed (A∗ = −q∂−1q = −A). Other possibilities include the combination
A = q∂−1q + r∂−1r or A = q∂−1r + r∂−1q, etc.

These eigenfunction symmetries may be used in symmetry reductions of the CKP
hierarchy, coupling the linear equations for q and r with the evolution equations for the fields
u2, . . . . For example, setting Lx + Ly = 0 (i.e. L = B1 + q∂−1q such that [B1 + A,L] = 0)
leads to the relation u2 = q2 and hence (via equation (11)) to the modified KdV equation.
This procedure is described in [15].

As already mentioned the flow ∂t2 is not admissible in the CKP setting as L∗
t2

+ Lt2 =
2[B2, L] �= 0 except in the case where one would impose the reduction condition B2 = L2

(such that [B2, L] = 0 and Lt2 = 0). This condition implies that 2u4 + u3,x + u2
2 = 0 and

hence that u2,t3 = 1
4u2,3x + 3u2u2,x (the KdV equation). Similarly one may put B4 = L4 and

find that the (2 + 1)-dimensional CKP equation reduces to a third-order (1 + 1)-dimensional
system for the fields u2 and u4.

In the case of the eigenfunction-related evolutions, one may consider a symmetric
combination A = q∂−1r − r∂−1q instead of the anti-symmetric q∂−1r + r∂−1q. It is not
associated with a symmetry of the CKP hierarchy, but can nevertheless be used in reductions:
let us, for example, set Ly = [q∂−1r − r∂−1q, L] such that L∗

y +Ly = 2[q∂−1r − r∂−1q, L],
at the same time setting Ly = 0 by imposing the constraint L−2 = q∂−1r − r∂−1q (both
sides are symmetric operators of order −2). This condition yields 1 = −qrx + rqx and
−2u2 = rq3x − qr3x . It then follows that qt3 = q3x + 3u2qx + 3

2u2,xq = 1
4q3x − 3

4qxq2x/q; this
equation is transformed into the modified KdV equation by the transformation q = exp v.

Another possibility would be to consider the evolution Ly = [B2 + A,L] (still with
A = q∂−1r−r∂−1q) such thatL∗

y +Ly = 2[B2 +A,L] (�= 0), indicating again incompatibility
with the condition (10). However, imposing the constraint L2 = B2 + q∂−1r − r∂−1q

(implying [B2 + A,L] = 0 and Ly = 0) solves this problem by reducing the CKP
hierarchy. This particular condition implies ∂2 + 2u2 + (2u4 − 1

2u2,2x + u2
2)∂

−2 + · · · =
∂2 + 2u2 + (−qrx + qxr)∂−2 + · · · or (2u4 − 1

2u2,2x + u2
2) = (−qrx + qxr); together with

Lt3 = [B3, L] (containing u2,t3 = 6u2u2,x + 3u4,x − 1
2u2,3x), this yields the following (1 + 1)-

dimensional system for the fields u2, q, r:

ut = 1
4u3x + 3uux − 3

2 (qrx − qxr)x
qt = q3x + 3uqx + 3

2uxq

rt = r3x + 3urx + 3
2uxr.

(12)
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This is a coupled KdV system. Solutions of this system are reported in [23]. The case
q = r = 0 (i.e. CKP with L2 = B2) yields the KdV equation.

The condition L4 = B4 + q∂−1r − r∂−1q leads in a similar way to a coupled system:

u2,t3 = − 1
2u2,3x + 6u2u2,x + 3u4,x

u4,t3 = 1
4u4,3x − 6u2u4,x + 3u2,xu2,2x + 9

4u2u2,3x − 3(u3
2)x + 3

4 (rqx − qrx)x
qt3 = q3x + 3uqx + 3

2uxq

rt3 = r3x + 3urx + 3
2uxr.

(13)

In conclusion, the constraint

Lk = Bk + q∂−1r − r∂−1q k: even integer (14)

(q, r CKP eigenfunctions) on the CKP Lax operator L yields a number of (1 + 1)-dimensional
nonlinear evolution equations. I wish to emphasize that the above dimensional reductions
are not symmetry reductions in the classical sense, since the evolutions introduced are not
compatible with the CKP condition (10). The compatibility of the equations introduced for
the extra evolution parameter (y) can only be guaranteed if one at the same imposes that the
evolution is trivial (Ly = 0). The result nevertheless is a series of integrable reductions.

4. The BKP case

Analogous to formula (10), the BKP hierarchy is obtained by imposing the condition

L∗∂ + ∂L = 0 (15)

on the KP Lax operator. Again, one must at the same time forget about the even-indexed KP
time variables as they do not preserve this condition. Formula (15) implies u3 = −u2,x , etc
such that B∗

n∂ + ∂Bn = 0 when n is odd. This implies that a BKP eigenfunction� gives rise to
a BKP adjoint eigenfunction �x and that � = constant is always a BKP eigenfunction. The
basic member of the BKP linear system is

�t3 = �3x + 3u2�x. (16)

For n even one has B∗
n∂ = ∂Bn + 2an (where an = Res∂ (Ln) and Res∂ is the coefficient of

∂−1). The most basic equation contained in the BKP hierarchy is

9vx,t5 − 5v2t3 + (−5v2x,t3 − 15vxvt3 + v5x + 15vxv3x + 15v3
x)x = 0 (17)

with vx = u2.
The following section deals with the definition of some new dimensional reductions of the

BKP hierarchy. In the second section, these reductions will be cast in a bilinear form. Such
a bilinear formulation is very convenient for the derivation of classes of exact solutions to the
nonlinear PDEs.

4.1. Nonstandard reductions

The standard reductions Ltk = 0 (Lk = Bk) with k = 3, 5, . . . include the Sawada–Kotera
equation [22, 24]. Consider two BKP eigenfunctions q and r and hence two adjoint BKP
eigenfunctions qx and rx . A tau-function description of the eigenfunction symmetry reductions
Lk = Bk + q∂−1rx − r∂−1qx (k = 1, 3, . . .) is given in [14] (Ly = [Bk + q∂−1rx − r∂−1qx, L]
is an evolution compatible with BKP).

Now, consider the following evolution with respect to a parameter y: Ly = [A,L]
with A = Bk + q∂−1rx + r∂−1qx and where k is an even integer and q and r are two
BKP eigenfunctions. From the condition (15) it should follow that 0 = L∗

y∂ + ∂Ly =
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[L∗, A∗]∂ − ∂[A,L] or that [A + ∂−1A∗∂, L] = 0. This corresponds to 2[Bk + q∂−1rx +
r∂−1qx − ∂−1(qr)x + ∂−1ak, L] = 0. This condition is met if one imposes the following
constraint:

Lk = Bk + q∂−1rx + r∂−1qx. (18)

The above constraint (18) on the BKP Lax operator reduces the (2 + 1)-dimensional BKP
hierarchy to (1 + 1)-dimensional integrable hierarchies. In this expression q and r are BKP
eigenfunctions (i.e. they satisfy �tn = Bn� as, for example, in (16)).

Taking for example k = 2 in (18) with L2 = ∂2 + 2u2 − u2,x∂
−1 + · · ·, one finds

u2,x = −(qr)x . If zero boundary conditions are assumed this implies u2 = −qr and hence
(via (16)):

qt3 = q3x − 3qrqx rt3 = r3x − 3qrrx. (19)

The special case q = r (or Lk = Bk + 2q∂−1qx) yields the modified KdV equation qt3 =
q3x − 3q2qx and choosing q = r = 0 (corresponding to the two-reduction B2 = L2) implies
u2,x = 0 and hence does not contain any interesting system. The choice r = 1 (remember that
r = constant is a valid BKP eigenfunction) yields the KdV equation qt = q3x − 3qqx .

In a completely similar fashion one may introduce the reduction condition L2 =
B2 −2

∑n
i=1 qi∂

−1qi,x (qi BKP eigenfunctions) which implies u2 = ∑n
i=1 q

2
i (up to a constant)

and hence

qi,t = qi,3x + 3

( n∑
i=1

q2
j

)
qi,x i = 1, . . . , n. (20)

The manner in which the system (1) is contained in the BKP hierarchy is hereby explained;
it is a constraint of the BKP hierarchy corresponding to the conditional symmetry Ly =
[B2 − 2

∑n
i=1 qi∂

−1qi,x, L].
Nonzero boundary conditions u2 = ∑n

i=1 q
2
i + c are actually a special case of the vector

constraint u2 = ∑n+1
i=1 q

2
i (as qn+1 = √

c is a valid BKP eigenfunction).
The reduction condition L4 = B4 + q∂−1qx leads to the relation

−6u2u2,x − 2u4,x + u2,3x = qqx. (21)

The equation Lt3 = [B3, L] implies u2,t3 = 6u2u2,x + 3u4,x − 2u2,3x . This in turn implies the
following coupled KdV system [25, 26]:

u2,t3 = − 1
2u2,3x − 3u2u2,x − 3

4 (q
2)x

qt3 = q3x + 3u2qx.
(22)

The case q = 0 (i.e. L4 = B4) reduces to the Korteweg–de Vries equation [27].
In the following sections we shall transform the condition (18) into a bilinear constraint

on the BKP tau-function. First we introduce this tau-function and the accompanying BKP
bilinear identity.

4.2. Bilinear constraints

The nonlinear equations for the BKP hierarchy can be summarized into a bilinear identity [18,
22]. One shows that if ψ(t, λ) is a BKP eigenfunction which also satisfies the eigenvalue
problem Lψ = λψ one has

Resλ
[
λ−1ψ(t, λ)ψ(t ′,−λ)] = 1 (23)
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(Resλ = coefficient of λ−1). At the same time it is shown that the wavefunction ψ can be
represented as ψ(t, λ) = τ(t − ε(λ))/τ(t) exp ξ(t, λ) where ξ(t, λ) = ∑

n=1,3,... λ
ntn and

ε(λ) = (2λ−1, 2λ−3/3, 2λ−5/5, . . .). This then implies the equation

Resλ
[
λ−1τ(t − ε(λ))τ (t ′ + ε(λ)) exp ξ(t − t ′, λ)] = τ(t)τ (t ′) (24)

for the BKP tau-function τ . This equation contains the Hirota bilinear equations for all
the nonlinear PDEs in the BKP hierarchy. The lowest-order equation (corresponding to
equation (17)) in this set is

(9D1D5 − 5D3
1D3 − 5D2

3 +D6
1)τ · τ = 0 (25)

where Di the Hirota D-operator with respect to ti [28]. All the fields ui can be expressed in
terms of τ . The field u2 is connected to the tau-function by the relation u2 = 2∂2

x log τ .
A condition of the type (18) can also be transformed into a bilinear identity for the

function τ and the fields ρ1 = qτ and ρ2 = rτ . A similar derivation may be found in [14] for
the k-constrained BKP system (with k odd).

Proposition. The k-constrained BKP hierarchy (k : 2, 4, . . .), defined by the condition

Lk = Bk + 2q∂−1rx + 2r∂−1qx (26)

is equivalent to the bilinear identity

Resλ
[
λk−1τ(t − ε(λ))τ (t ′ + ε(λ)eξ(t−t

′,λ)] = −2[ρ1(t)ρ2(t
′) + ρ1(t

′)ρ2(t)] (27)

for the BKP tau-function τ and the fields ρ = qτ and σ = rτ .

Proof. Relation (26) corresponds to

Lk = Bk + 2
∞∑
m=1

(−)m+1(qrmx + rqmx)∂
−m. (28)

It follows that

Res∂ [L
k∂m] = 2(−)m(qr(m+1)x + rq(m+1)x) m � 0 (29)

or, on using L = P∂P−1 with P = 1 + w1∂
−1 + w2∂

−2 + · · · [18],

Res∂ [P∂
kP−1∂m] = 2(−)m(qr(m+1)x + rq(m+1)x). (30)

The BKP condition (15) corresponds to P ∗ = ∂P−1∂−1 and hence one has that

Res∂ [P∂
k−1P ∗∂m+1] = (−)m(qr(m+1)x + rq(m+1)x). (31)

Using the lemma [29, p 82] on the left-hand side, one finds

Resλ[λ
k−1P(λ)(−)m+1(∂m+1P)(−λ)] = 2(−)m(qr(m+1)x + rq(m+1)x) (32)

with P(λ) = 1 + w1/λ + w2/λ
2 + · · ·. As ψ(t, λ) = P exp ξ(t, λ), one has [18]

Resλ[λ
k−1ψ(t, λ)∂m+1

x ψ(t,−λ)] = −2q(t)r(m+1)x(t)− 2r(t)q(m+1)x(t) (33)

(for m � 0). The case m = 0 implies ∂xResλ[λk−1ψ(t, λ)ψ(t,−λ)] = −4(qr)x . In the case
of zero boundary conditions this leads to relation (33) for m � −1. This implies that

Resλ[λ
k−1ψ(t, λ)ψ(t ′,−λ)] = −2q(t)r(t ′)− 2q(t ′)r(t). (34)

Setting q = ρ1/τ and r = ρ2/τ one finds relation (27). �
The cases k odd (see [14]) and k even of the constrained BKP hierarchy

Lk = Bk + 2q∂−1rx + 2(−)kr∂−1qx (35)

can be combined into the single bilinear identity

Resλ
[
λk−1τ(t − ε(λ))τ (t ′ + ε(λ))eξ(t−t

′,λ)] = −2[ρ1(t)ρ2(t
′) + (−)kρ1(t

′)ρ2(t)]. (36)

Expansion of this expression in powers of t − t ′ yields a set of Hirota equations describing the
coupling between the bilinear fields τ , ρ1 and ρ2. Solutions to the equation (36) are discussed
in the following section.
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5. Solutions of (reduced) BKP bilinear equations

In this section a new method for showing Pfaffian solutions of the BKP and reduced BKP
hierarchies (24) and (36) is introduced. To prove such solutions, one traditionally starts from
a suitable KP tau-function and then uses its connection with BKP tau-functions: a BKP tau-
function is the square root of a KP tau-function (after setting t2n = 0) [18]. One can also
directly check this type of solution on the lowest-order bilinear equations ((25), . . .) contained
in the hierarchy [30]. In the following paragraphs I wish to introduce a method which allows for
the direct verification of the Pfaffian expressions on the BKP bilinear identity (24). Besides the
obvious advantage of not having to refer to other equations and to the nontrivial link between
KP and BKP tau-function, there exists the possibility of using this same technique on the
reduced BKP bilinear identities (36). Furthermore all PDEs in the hierarchy are verified at
once, using only elementary properties of Pfaffians.

Consider two BKP eigenfunctionsf and g and define the BKP eigenfunction potential [14]
by

&(t ± ε(λ)) = &(t) + f (t ± ε(λ))g(t)− f (t)g(t ± ε(λ)) (37)

meaning

&x(f, g) = fxg − fgx
&t3(f, g) = f3xg − fg3x − 2f2xgx + 2fxg2x + 3u2(fxg − fgx)
. . . .

(38)

A second concept needed is the Pfaffian. In general a Pfaffian (1, 2, . . . , N) of size N (N an
even integer) can (recursively) be defined by the expansion rule

(1, 2, . . . , N) =
N∑
i=2

(−)i(1, i)(2, 3, . . . , � i, . . . , N) (39)

where (i, j) (with i < j : 1, . . . , N) are N(N − 1)/2 independent quantities (see also [27,
30, 31]). One has, for example, that (1, 2, 3, 4) = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3),
etc. The square of the Pfaffian (39) equals the determinant of the anti-symmetric matrix with
above-diagonal elements (i, j). The Pfaffian with repeated indices (e.g. (1, 1, 2, . . . , N − 1))
is zero.

Below, we shall show that if one defines the quantity (i, j) by the eigenfunction potential
&(fi, fj ) the Pfaffian turns into a BKP tau-function:

τ = (1, 2, . . . , N) with (i, j) = &(fi, fj ) (40)

satisfies the bilinear identity (24). Here the fi (i : 1 . . . N) are vacuum BKP eigenfunctions:
fi,tn = fi,nx . The potentials &(fi, fj ) all carry an arbitrary integration constant.

First of all, one needs expressions for τ(t ± ε(λ)). To this end we introduce an auxiliary
vacuum BKP eigenfunction f0 = 1 such that&(f, f0) = ∫

fx = f (or (i, 0) = fi(t)) and the
symbols (S, i) = fi(t − ε(λ)) and (S̄, i) = fi(t + ε(λ)) and (S, 0) = (S̄, 0) = 1.

Lemma 1. One has for τ(t) = (1, 2, . . . , N)
τ(t − ε(λ)) = (S, 0, 1, . . . , N) τ(t + ε(λ)) = (S̄, 0, 1, . . . , N). (41)

The proof of this statement goes by induction on N . The case N = 2 reduces to
&12(t − ε(λ)) = &12(t) + f1(t)f2(t − ε(λ)) − f1(t − ε(λ))f2(t) which is formula (37).
For general N , one may first expand τ as

τ = (1, 2, . . . , N) =
N∑
j=2

(−)j&1j (2, . . . , �j, . . . , N) (42)
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and hence by formula (37) and the inductive step

τ(t − ε(λ)) =
N∑
j=2

(−)j [&1j + (S, 1)(0, j)− (0, 1)(S, j)](S, 0, 2, . . . , �j, . . . , N)

= (S, 0, 1, . . . , N)− (1, S)(0, 2, . . . , N) + (1, 0)(S, 2, . . . , N)

+(S, 1)[−(0, S, 0, 2, . . . , N)− (S, 0)(0, 2, . . . , N)− (0, 0)(S, 2, . . . , N)]
−(1, 0)[(S, S, 0, 2, . . . , N) + (S, 0)(S, 2, . . . , N)− (S, S)(0, 2, . . . , N)]

= (S, 0, 1, . . . , N) (43)

where we have again used the expansion theorem of Pfaffians and the conventions (S, 0) = 1,
(0, 0) = (S, S) = 0.

We shall use the expression (41) in expanded form:

τ(t − ε(λ)) =
N∑
i=0

(−)i(S, i)(0, 1, . . . , � i, . . . , N)

τ(t ′ + ε(λ)) =
N∑
j=0

(−)i(S̄, j)(0, 1, . . . , �j, . . . , N)′.
(44)

Another formula needed in the derivation of Pfaffian solutions of the BKP bilinear identity
is the following.

Lemma 2.

Resλ
[
λ−1f (t − ε(λ))g(t ′ + ε(λ)) exp ξ(t − t ′, λ)] = f (t)g(t ′)− 2&(f, g) + 2&(f, g)′. (45)

This lemma is shown in [14, appendix] for general BKP eigenfunctions f and g. Here
we only need it for vacuum BKP eigenfunctions f and g (ftn = fnx and gtn = gnx). Note that
both left- and right-hand sides are free of integration constants.

Now it becomes quite easy to check that the Pfaffian-type expression (40), with
definition (37) and (38), is a solution to the bilinear identity (24).

Theorem 1. Let τ = (1, 2, . . . , N), with (i, j) = &(fi, fj ) and fi,tn = fi,nx , then one has

Resλ
[
λ−1τ(t − ε(λ))τ (t ′ + ε(λ) exp ξ(t − t ′, λ)] = τ(t)τ (t ′). (46)

Proof. By the formulas (44) we have that

Resλ
[
λ−1τ(t − ε(λ))τ (t ′ + ε(λ) exp ξ(t − t ′, λ)]

=
∑
i,j�0

(−)i+j (0, . . . , � i, . . . , N)(0, . . . �j, . . . , N)′

×Resλ
[
λ−1fi(t − ε(λ))fj (t ′ + ε(λ)) exp ξ(t − t ′, λ)] (47)

which is equal by formula (45) to∑
i,j�0

(−)i+j (0, . . . , � i, . . . , N)(0, . . . �j, . . . , N)′[fi(t)fj (t ′)− 2(i, j) + 2(i, j)′]. (48)

As f0 = 1, the first term in square brackets will yield (1, . . . , N)(1, . . . , N)′ (i.e. τ(t)τ (t ′)).
The last two terms in square brackets yield nothing as they reduce to

2
∑
j�0

(−)j (j, 0, . . . , N)(0, . . . �j, . . . , N)′ − 2
∑
i�0

(−)i(0, . . . , � i, . . . , N)(i, 0, . . . , N)′ (49)

in which (j, 0, . . . , N) and (i, 0, . . . , N)′ are zero (repeated indices). �
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It is important to stress the presence of arbitrary constants in the eigenfunction potentials
(i, j) = &(fi, fj ) and hence in the BKP tau functions τ = (1, 2, . . . , N). For the reduced
tau-functions these constants will no longer be (completely) free.

A formula similar to (45) will make the verification of the reduced bilinear identity (36)
just as easy.

Lemma 3.

Resλ
[
λk−1f (t − ε(λ))g(t ′ + ε(λ) exp ξ(t − t ′, λ)] = −2&(f, gkx) + 2(−)k&(fkx, g)′. (50)

The case of k odd may be proved by taking the tk-derivative of relation (45). The case of
k even may be obtained by taking the x-derivative of the case k− 1. Here one should actually
write −2&(f, gkx) + 2(−)k&(fkx, g)′ + 2Cf,gkx − 2(−)kCfkx ,g in the right-hand side of (50)
as no integration constants are present in this equality.

Theorem 2. The reduced BKP bilinear identity (36) has solutions τ = (1, . . . , N), ρ2 =
(0, 1, . . . , N + 1) and ρ1 = (0, 1, . . . .N − 1) (with (i, j) = &(fi, fj ) and fi,tn = fi,nx
and f0 = 1) with the additional constraint fi,kx = fi+1 (only for i > 0) and the condition
Cj,l+1 = (−)kCj+1,l between the eigenfunction potentials (see note after proof).

Proof. One uses the expressions (44) for the shifted tau-function such that

Resλ
[
λk−1τ(t − ε(λ))τ (t ′ + ε(λ)) exp ξ(t − t ′, λ)]

=
∑
i,j�0

(−)i+j (0, . . . , � i, . . . , N)(0, . . . �j, . . . , N)′

×Resλ
[
λk−1fi(t − ε(λ))fj (t ′ + ε(λ)eξ−ξ

′]
(51)

Resλ
[
λk−1fi(t−ε(λ))fj (t ′ +ε(λ))eξ−ξ ′]

is zero if i = j = 0 (f0 = 1) and equal to −2(i, j +1)
if i = 0 and 2(−)k(i + 1, j)′ if j = 0; otherwise it is −2(i, j + 1)+ 2(−)k(i + 1, j)′ + 2Ci,j+1 −
2(−)kCi+1,j (remember that fi+1 = fi,kx). If one sets −Ci,j+1 + (−)kCi+1,j = 0 then the
right-hand side of (51) reduces to

2
∑

i�0,j>0

(−)i+j (0, . . . , � i, . . . , N)(0, . . . � j, . . . , N)′(−)(i, j + 1)

+2(−)k
∑

i>0,j�0

(−)i+j (0, . . . , � i, . . . , N)(0, . . . � j, . . . , N)′(i + 1, j)′ (52)

or

2
∑
j>0

(−)j (j + 1, 0, . . . , N)(0, . . . � j, . . . , N)′

+2(−)k
∑
i>0

(−)i(0, . . . , � i, . . . , N)(0, . . . , N)′. (53)

Only one term in each sum remains (no repeated indices in Pfaffians allowed):

2(N + 1, 0, . . . , N)(0, . . . , N − 1)′ + 2(−)k(0, . . . , N − 1)(N + 1, 0, . . . , N)′ (54)

or

−2(0, . . . , N,N + 1)(0, . . . , N − 1)′ + 2(−)k+1(0, . . . , N − 1)(0, . . . , N,N + 1)′ (55)

which is just

−2[ρ1(t)ρ2(t
′) + (−)kρ1(t

′)ρ2(t)] (56)

thereby ending the proof. �



Dimensional reductions of BKP and CKP hierarchies 3457

In the case of odd k, the existence of these solutions to constrained BKP systems was
shown in [14] in a different fashion. In this case the conditions Ci,j+1 = (−)kCi+1,j for the
integration constants reduce to the remarks made in [14] concerning these solutions. If k is even,
the conditions reduce to Ci,j+1 = Ci+1,j and imply that all integration constants are zero: for
example,C1,2 = C2,1 butC1,2 = −C2,1 (because of the anti-symmetry&(f, g) = −&(g, f )),
which yields C1,2 = 0. Note that since fi+1 = fi,kx (with k : 2, 4, . . .), all eigenfunction
potentials in (1, . . . , N) are of the form &(f, fnx) where n is even and the absence of the
integration constant now just means that &(f, f2x) = f 2

x − ff2x and similarly for &(f, f4x),
&(f2x, f4x) . . . .

6. Conclusions

A class of dimensional reductions of the BKP and CKP hierarchies is described. These are not
classical symmetry reductions as there is no corresponding symmetry of the original BKP or
CKP equations. They are conditional symmetry reductions in the sense that a new evolution is
introduced which preserves the defining BKP/CKP condition only if it is immediately reduced.
Among the reductions one finds the vector-modified KdV system and coupled KdV systems.

In the case of the BKP reductions, the scalar case (n = 1) of equation (20) was also de-
rived (from the BKP hierarchy) in [19] via the method of density constraints (in which a linear
combination of conserved densities is constrained to zero). One of the reasons for the author
of [19] to study density constraints is that he was unable to find an expression for an eigen-
function symmetry for the BKP hierarchy (one was constructed in [14] containing two BKP
eigenfunctions: (qxr − qrx)x solves the linearized BKP equation). The author is then forced
to use a constraint ansatz u = f (�,�x, . . .) (where f is to be determined from consistency
conditions), which obscures the connection with the symmetry structure of the hierarchy.

In the method presented above, one can simply start form the KP (eigenfunction) symmetry
structure and find classical or conditional symmetry reductions of BKP. In this manner the
construction presented here actually unifies the description of classical symmetry constraints
of BKP (utk = (qxr − qrx)x and conditional symmetry conditions (u = qr etc) in the single
expression (35).

Let me further remark that the conditional symmetry reductions of CKP are defined in a
completely analogous fashion. As there is a need for two eigenfunctions in the CKP constraint
Lk = Bk +q∂−1r−r∂−1q, a simple ansatz of type u = f (q, qx, . . .) (with only one eigenfunc-
tion) will not reveal the above constraints (i.e. will only yield the classical reductions in [15]).

It would be interesting to find a description of the present reductions in terms of an
elementary constraint on the tau-functions.

I wish to remark that, as a given (1 + 1)-dimensional system is not necessarily a unique
reduction of a (2 + 1)-dimensional system, it follows that there may exist different bilinear
formulations and different representations of their solutions (Wronskian, Pfaffian etc) inherited
from the various reduction procedures. This fact is demonstrated here in the case of the KdV
equations, which arise more than once as a reduction of the BKP and CKP equations.

For the solutions of the reduced BKP hierarchy a new technique is introduced. This
method allows for the direct verification of Pfaffian-type solutions on bilinear identities of the
BKP and reduced BKP type. It has the advantage that all Hirota bilinear PDEs in the hierarchy
can be verified in a single calculation. (When one checks the Hirota equations one at a time,
the identities of Pfaffians used become more involved at higher order.) In this way a class of
solutions is derived for the reduced systems. See also [7,9] for a similar situation with the KP
Wronskian and Grammian solutions.

Solutions to the coupled KdV system (12) are reported in [23].
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